

TABLE OF CONTENTS

Chapter No.	Title	Page No.
1	Fundamentals of Renewable Energy Systems	01-37
	1.1 Global Energy Scenario and Environmental Impact	
	1.2 Need for Renewable Energy and Sustainable Development	
	1.3 Classification of Renewable Energy Sources	
	1.4 Basic concepts of Distributed Generation and Microgrids	
	1.5 Challenges in Integrating Renewables into Conventional Grids	
	1.6 Overview of Hybrid Renewable Systems	
2	Solar Energy Conversion and Power Conditioning	38-73
	2.1 Solar Radiation Fundamentals and PV Cell Principles	
	2.2 I-V and P-V Characteristics of Solar Modules	
	2.3 Series/Parallel Connection and PV Array Design	
	2.4 Maximum Power Point Tracking (MPPT) techniques	
	2.5 DC-DC Converters for PV Systems (Buck, Boost, Buck-Boost)	
	2.6 Inverter Topologies for Grid-Connected PV	
	2.7 Control of Grid-Connected PV Systems (current/voltage Control, PLL)	
3	Wind Energy Conversion and Interface Systems	74-103
	3.1 Wind Resource Characteristics and Site Assessment	
	3.2 Aerodynamics and Mechanical Aspects of Wind Turbines	
	3.3 Types of Wind Generators – SCIG, PMSG, DFIG	
	3.4 Power Electronic Converters for Wind Systems	
	3.5 Control of Variable-Speed Wind Turbines	
	3.6 MPPT in Wind Energy Conversion Systems	
	3.7 Grid Connection of Wind Farms and Reactive Power Support	
4	Power Electronics for Renewable Energy Systems	104-134
	4.1 Role of Power Electronics in Renewable Integration	
	4.2 Review of Semiconductor Devices (IGBT, MOSFET, SiC, GaN)	
	4.3 Converter Classifications: AC-DC, DC-AC, DC-DC, AC-AC	

4.4	Inverter Control and Modulation Techniques (SPWM, SVPWM)	
4.5	Multilevel Inverters (Diode-Clamped, Flying Capacitor, Cascaded H-Bridge)	
4.6	Bidirectional Converters and Interleaved Topologies	
4.7	Soft-Switching Converters and High-Frequency Link Inverters	
5	Power Quality and Conditioning in Renewable Systems	135-171
5.1	Power Quality Definitions and Standards (IEEE 519)	
5.2	Harmonic Generation in Converters	
5.3	Filtering Techniques – Passive, Active, Hybrid	
5.4	Reactive Power Compensation and VAR Control	
5.5	Voltage Regulation and Flicker Mitigation	
5.6	Dynamic Voltage Restorer (DVR) and Unified Power Quality Conditioner (UPQC)	
5.7	Power Conditioning Systems for Hybrid and Microgrid Applications	
6	Energy Storage and Interface Systems	172-197
6.1	Need for Energy Storage in Renewable Systems	
6.2	Classification of Storage Technologies	
6.3	Battery Modeling and Management Systems (BMS)	
6.4	Converter Interfaces for Energy Storage (Bidirectional DC-DC)	
6.5	Control Strategies for Charge/Discharge Management	
6.6	Hybrid Energy Storage and Energy Management	
7	Microgrids and Distributed Energy Integration	198-229
7.1	Architecture and Classification of Microgrids (AC, DC, Hybrid)	
7.2	Control Hierarchy: Primary, Secondary, Tertiary Levels	
7.3	Load Sharing and Voltage/Frequency Control in Islanded Operation	
7.4	Grid-Forming vs. Grid-Following Inverters	
7.5	Islanding Detection Techniques and Reconnection Procedures	
7.6	Protection and Coordination in Distributed Systems	
7.7	Communication and Control Standards for Smart Microgrids	

8	Modeling, Simulation, and Case Studies	230-153
8.1	MATLAB/Simulink Modeling of Renewable Systems	
8.2	PV-Wind Hybrid System Design and Simulation	
8.3	Energy Storage Integration and Control Demonstration	
8.4	Power Quality Analysis and Harmonic Mitigation in Case Studies	
8.5	Economic and Reliability Analysis of Hybrid Systems	
9	Emerging Trends and Future Directions	154-282
9.1	Advanced Converter Topologies (Z-Source, Quasi-Z-Source, Matrix)	
9.2	Wide-Bandgap Devices (SiC, GaN) and High-Efficiency Systems	
9.3	Artificial Intelligence and Machine Learning in Renewable Control	
9.4	Internet of Energy (IoE) and Digital Twins for Smart Grids	
9.5	Vehicle-to-grid (V2G) and Distributed Energy Resource Management	
9.6	Policy, Regulation, and Future Research Challenges	