TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO.
1	QUANTUM MECHANICS	01-14
	1.1 Wave-Particle Duality	
	1.2 Schrödinger Equation and Applications	
	1.3 Quantum Tunneling and Potential Barriers	
2	CRYSTALLOGRAPHY AND SOLID-STATE PHYSICS	15-29
	2.1 Crystal Structures and X-ray Diffraction	
	2.2 Band Theory of Solids	
	2.3 Electrical and Thermal Properties of Solids	
3	SEMICONDUCTOR PHYSICS	30-43
	3.1 Intrinsic and Extrinsic Semiconductors	
	3.2 p-n Junctions and Diodes	
	3.3 Transistors and Applications	
4	OPTICS AND PHOTONICS	44-60
	4.1 Interference, Diffraction, and Polarization	
	4.2 Lasers and Applications	
	4.3 Fiber Optics and Communication	
5	ELECTROMAGNETISM AND MAXWELL'S	61-78
	EQUATIONS	
	5.1 Electrostatics and Magnetostatics	
	5.2 Time-Varying Fields	
	5.3 Maxwell's Equations and Electromagnetic Waves	
6	MODERN PHYSICS	79-96
	6.1 Special Theory of Relativity	
	6.2 Nuclear Physics and Radioactivity	
	6.3 Particle Physics and Accelerators	
7	NANOSCIENCE AND NANOTECHNOLOGY	97-115
	7.1 Introduction to Nanomaterials	
	7.2 Synthesis Techniques	
	7.3 Applications in Electronics and Medicine	

8	ACOUSTICS AND ULTRASONICS 8.1 Sound Properties and Measurement 8.2 Ultrasonic Generation and Detection 8.3 Applications in NDT and Medical Imaging	116-134
9	THERMODYNAMICS AND STATISTICAL MECHANICS 9.1 Laws of Thermodynamics 9.2 Entropy and Free Energy 9.3 Quantum Statistics: Bose-Einstein and Fermi-Dirac	135-153
10	SUPERCONDUCTIVITY AND MAGNETIC MATERIALS 10.1 Type I and Type II Superconductors 10.1 Meissner Effect and Applications 10.3 Soft and Hard Magnetic Materials	154-169
11	MATERIALS SCIENCE 11.1 Mechanical, Electrical, and Thermal Properties of Materials 11.2 Phase Diagrams and Heat Treatment 11.3 Smart Materials and Composites	170-184
12	RESEARCH AND EMERGING TRENDS 12.1 Green Energy Physics 12.2 Quantum Computing 12.3 Physics in Space Exploration	185-197