TABLE OF CONTENTS

Chapter	Title	Page
No.	Title	No.
I	SOLAR ENERGY SYSTEM	01 - 66
	(PHOTOVOLTAIC SYSTEM)	
	1.1 Introduction to Solar Energy and its Potential	
	1.2 Working Principle of Photovoltaic (PV) Cells	
	1.3 PV Modules, Arrays, and Configurations	
	1.4 Maximum Power Point Tracking (MPPT) Techniques	
	1.5 Solar Inverters and Power Conditioning Units	
	1.6 Design and Sizing of PV Systems	
	1.7 Grid-Connected vs. Stand-Alone PV Systems	
	1.8 PV System Performance, Efficiency, and Degradation	
	1.9 Challenges of Solar Variability and Forecasting	
	1.10 Case Study: Solar-Powered EV Charging Infrastructure	
II	WIND ENERGY SYSTEM	67 - 108
	2.1 Introduction to Wind Energy and Global Outlook	
	2.2 Aerodynamics of Wind Turbines	
	2.3 Types of Wind Turbines: HAWT and VAWT	
	2.4 Wind Energy Conversion Systems (WECS)	
	2.5 Wind Turbine Components and Control	
	2.6 Generator Technologies: DFIG, PMSG, Squirrel Cage	
	2.7 Power Curve, Cut-in and Cut-out Speeds	
	2.8 Wind Forecasting and Grid Integration Challenges	
	2.9 Wind Energy for EV Charging	
	2.10 Case Study: Wind-Based EV Charging in Remote Areas	
III	BATTERY SYSTEM	109 - 159
	3.1 Introduction to Battery Energy Storage Systems (BESS)	
	3.2 Types of Batteries for EVs and Renewable Systems	
	3.3 Battery Parameters: Voltage, Capacity, Energy Density	
	3.4 Battery Models and Equivalent Circuit Representation	
	3.5 Battery Management Systems (BMS): Design and Functions	
	3.6 Charging and Discharging Characteristics	
	3.7 Battery Life Cycle, Aging, and Thermal Management	
	3.8 SoC and SoH Estimation Methods	
	3.9 Battery Safety, Recycling, and Environmental Impact	
	3.10 Role of Batteries in PV/Wind Integration and EV Support	
<u> </u>	<u> </u>	1

IV	ELECTRIC VEHICLES	160 - 210
	4.1 Evolution and Classification of Electric Vehicles	
	4.2 Architecture of Electric Vehicles: Powertrain Components	
	4.3 Electric Motors: BLDC, PMSM, Induction Motors	
	4.4 Power Electronics and Control in EVs	
	4.5 EV Battery Packs and Charging Mechanisms	
	4.6 EV Charging Infrastructure: Levels 1, 2, and Fast Charging	
	4.7 Smart Charging and Load Management	
	4.8 Vehicle-to-Grid (V2G), Grid-to-Vehicle (G2V), and Vehicle-to-	
	Home (V2H)	
	4.9 Environmental, Economic, and Policy Aspects of EVs	
	4.10 Case Study: EV Deployment in Smart Cities	
V	INTEGRATION OF PV, WIND, AND BATTERY TO	211 - 260
	ELECTRIC VEHICLES	
	5.1 Introduction to Hybrid Renewable Energy Systems (HRES)	
	5.2 Architecture and Design of PV-Wind-Battery Systems	
	5.3 Energy Management Strategies and Load Forecasting	
	5.4 Power Electronics Interfaces and Hybrid Controllers	
	5.5 Optimization Techniques for Multi-Source Systems	
	5.6 Smart Grids and IoT for Intelligent Integration	
	5.7 Grid Impact of Renewable-Powered EV Charging	
	5.8 Simulation Tools and Case Studies (HOMER, MATLAB)	
	5.9 Cost Analysis and Economic Feasibility	
	5.10 Future Trends: Hydrogen, Vehicle-Integrated PV, and AI-Driven	
	Energy Systems	