TABLE OF CONTENTS | Module No. | Title | Page No. | |------------|--|----------| | 1 | Introduction | 01-35 | | | 1.1 Neural Networks 1.2 Application Scope of Neural Networks 1.3 Artificial Neural Network 1.4 Evolution of Neural Network 1.5 Basic Working Model 1.6 Knowledge Representation 1.7 Supervised Learning Network | | | 2 | Associative Memory and Unsupervised Learning Networks | 36-70 | | | 2.1 Training Algorithms for Pattern Association – Autoassociative Memory Network 2.2 Heteroassociative Memory Network – Bidirectional Associative Memory (BAM) 2.3 Hopfield Networks 2.4 Iterative Autoassociative Memory Networks 2.5 Temporal Associative Memory Network 2.6 Fixed Weight Competitive Nets – Kohonen Self-Organizing Maps (SOM) 2.7 Organizing Feature Maps 2.8 Learning Vector Quantization (LVQ) 2.9 Counter Propagation Networks (CPN) 2.10 Adaptive Resonance Theory (ART) Networks | | | 3 | Third-Generation Neural Networks | 71-114 | | | 3.1 Spiking Neural Networks 3.2 Deep Learning Neural Network 3.3 Extreme Learning Machine Model 3.4 Convolutional Neural Networks 3.5 The Convolution Operation 3.6 Motivation 3.7 Pooling 3.8 Variants of The Basic Convolution Function 3.9 Structured Outputs 3.10 Data Types in Spiking Neural Networks (SNNs) 3.11 Efficient Convolution Algorithms in SNNs 3.12 Neuroscientific Basis of SNNs | | | | 3.13 Applications in Computer Vision | | |---|---|---------| | 3 | 3.14 Applications in Image Generation | | | | 3.15 Applications in Image Compression | | | 4 | Deep Feedforward Networks | 115-143 | | 4 | 4.1 Probabilistic Theory of Deep Learning | | | 4 | 4.2 Gradient Learning | | | 4 | 4.3 Chain Rule and Backpropagation | | | 4 | 4.4 Dataset Augmentation | | | 4 | 4.5 Noise Robustness | | | 4 | 4.6 Early Stopping | | | 4 | 4.7 Bagging | | | 4 | 4.8 Dropout | | | 4 | 4.9 Batch Normalization | | | 4 | 4.10 VC Dimension and Neural Nets | | | 5 | Recurrent Neural Networks | 144-176 | | ī | 5.1 Recurrent Neural Networks: Introduction | | | į | 5.2 Bidirectional Neural Network (BiNN) | | | į | 5.3 Deep Recurrent Networks | | | į | 5.4 Image Generation | | | [| 5.5 Image Compression | | | į | 5.6 Natural Language Processing | | | [| 5.7 Complete Auto Encoder | | | [| 5.8 Regularized Autoencoders | | | [| 5.9 Stochastic Encoders and Decoders | | | [| 5.10 Contractive Encoders | |