

TABLE OF CONTENTS

Chapter No.	Title	Page No.
1	Introduction to Neural Networks	01-30
	1.1 Overview and Historical Background of Neural Networks	
	1.2 Biological Inspiration and Artificial Neuron Models	
	1.3 Basic Network Architectures and Learning Paradigms	
	1.4 Applications and Real-World Use Cases	
	1.5 Challenges and Future Directions	
2	Mathematical Foundations	31-56
	2.1 Linear Algebra for Neural Computation	
	2.2 Probability and Statistics in Deep Learning	
	2.3 Calculus and Optimization Principles	
	2.4 Matrix Operations and Backpropagation	
	2.5 Gradient Descent and Its Variants	
3	Perceptrons and Feedforward Networks	57-74
	3.1 The Perceptron Model and Decision Boundaries	
	3.2 Limitations of the Single-Layer Perceptron	
	3.3 Multi-Layer Perceptrons (MLP)	
	3.4 Activation Functions and Nonlinearity	
	3.5 Training Feedforward Networks	
4	Backpropagation and Training Algorithms	75-90
	4.1 Error Functions and Loss Optimization	
	4.2 Derivation of the Backpropagation Algorithm	
	4.3 Regularization and Overfitting	
	4.4 Batch Normalization and Dropout Techniques	
	4.5 Advanced Optimization Methods (Adam, RMSProp)	
5	Deep Learning Architectures	91-110
	5.1 Deep Feedforward Networks	
	5.2 Autoencoders and Representation Learning	
	5.3 Convolutional Neural Networks (CNNs)	
	5.4 Recurrent Neural Networks (RNNs) and LSTMs	
	5.5 Hybrid and Hierarchical Deep Architectures	

6	Convolutional Neural Networks (CNN)	111-130
6.1	Convolution and Pooling Operations	
6.2	Popular CNN Architectures (AlexNet, VGG, ResNet)	
6.3	Transfer Learning and Fine-Tuning	
6.4	Object Detection and Image Segmentation	
6.5	Applications of CNNs in Computer Vision	
7	Recurrent and Sequence Models	131-160
7.1	Fundamentals of Sequence Modeling	
7.2	RNN, GRU, and LSTM Networks	
7.3	Attention Mechanisms and Sequence-to-Sequence Models	
7.4	Natural Language Processing with Deep Learning	
7.5	Speech Recognition and Time-Series Forecasting	
8	Advanced Deep Learning Topics	161-194
8.1	Generative Models: GANs and VAEs	
8.2	Reinforcement Learning Fundamentals	
8.3	Deep Reinforcement Learning Algorithms	
8.4	Graph Neural Networks (GNNs)	
8.5	Ethical AI and Explainable Deep Learning	
9	Implementation and Frameworks	195-232
9.1	Deep Learning Development Environments	
9.2	TensorFlow, Keras, and PyTorch Basics	
9.3	Model Evaluation and Cross-Validation	
9.4	Hyperparameter Tuning and Model Optimization	
9.5	Deployment and Cloud-Based Deep Learning	
10	Case Studies and Research Trends	233-265
10.1	Deep Learning in Computer Vision	
10.2	Deep Learning in Natural Language Processing	
10.3	Healthcare, Agriculture, and Industry 4.0 Applications	
10.4	Recent Research and Benchmark Datasets	
10.5	Future Trends in Neural Network Research	